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Abstract. Site percolation on the ordinary hypercubic lattice in four and five dimensions 
is studied using block cluster theory. The exact analytic renormalisation group equations 
of block cluster theory are obtained by a computer algorithm. They are solved numerically 
and yield, for the susceptibility exponent, y = 1.277 ( d  = 4), y = 1.031 ( d  = 5), and for the 
correlation length exponent v = 0.566 ( d  = 5). 

1. Introduction 

A wide variety of methods have been employed to study the percolation transition. 
They include series expansions [ 1,2], Monte Carlo simulations [3-51, integral equations 
[6], rigorous methods [7] and renormalisation group techniques. 

Renormalisation group techniques have been applied to the percolation transition 
both in Fourier space, leading to the E expansion [%lo], and in real space. Among 
the several real space renormalisation transformations [ 11-17], block cluster theory 
has yielded analytic renormalisation group equations and accurate values of the thermal 
exponent in arbitrary dimension of space smaller or equal to six [17,18]. 

The previous renormalisation group equations of block cluster theory, which yielded 
the thermal exponent in arbitrary dimension, were obtained for a special decorated 
hypercubic lattice. In this paper we present results for both the thermal and field 
exponents on the ordinary hypercubic lattice in four and five dimensions. 

2. Theory 

For the percolation transition, the basic requirement of renormalisation group theory 
that the free energy be conserved amounts, as discussed in detail in [17], to the 
preservation of the topological structure of the clusters upon renormalisation. Block 
cluster theory correspondingly ensures that the topology of the clusters in small blocks 
reflects that of those in the infinite lattice at the percolation transition. The conservation 
of the free energy upon renormalisation is optimised at the level of unit blocks by 
block cluster theory [ 17, 191. 

The renormalisation group transformation in block cluster theory consists of a 
two-parameter transformation, with parameters h and p ,  where p is the probability 
that a site is occupied. The action of an external field on the system can be described 
by a ghost site which is connected to each site of the system with a probability 1 - e-h. 
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Letting p b  be the probability that a block is occupied and 1 -e-% be the probability 
that a block is connected to the ghost site, the renormalisation transformation is 

l -e -%= Rz(p, h). 

The probability of occupation is transformed from the site system to the block 
system by requiring, in accordance with the requirement of optimal conservation of 
the free energy, that each d-dimensional unit block contains a site cluster that spans 
all directions, i.e. is percolative. Correlations between blocks are neglected. 

The probability of connection to the exterior site is transformed from the site to 
the block system by finding clusters in the block which span at least d - 1 directions 
and which are such that at least one site belonging either to the cluster or to its boundary 
is connected by an occupied bond to the external site. Determination of the field 
exponent therefore requires not only the counting of all d-percolating and (d  - 1)-  
percolating clusters, but also the exact enumeration of the nearest neighbours of all 
these clusters. 

Various ways of performing this enumeration have been found. Previous work has 
relied upon classifying topological shapes which can fit in a cell [ 181. This method is 
an improvement over a direct counting of cluster configurations, since each shape 
represents a multiple number of actual clusters. However, as the dimension of space 
increases, the number of shapes becomes very large, so that this task becomes extremely 
tedious. The practical limitation for this exact method was found to be at the dimension 
d = 4  for the ordinary hypercubic lattice [18]. 

3. Method of solution 

We developed another method of enumerating percolating clusters which classifies 
them according to the configuration of sites disconnected from the cluster, i.e. sites 
neither in the cluster nor nearest neighbours of the cluster. Rules were developed to 
count arrangements of occupied sites which exhibit connectivity and percolation 
according to block cluster theory. We found that the categorisation of clusters by 
configurations of disconnected sites greatly facilitated the enumeration of clusters. 
This method enabled us to rederive the critical exponent, v, in dimension d = 4  and 
to obtain parts of the fixed-point equations in d = 5 .  

However, in dimension d = 5, a complete analytic enumeration of percolating 
clusters is far too tedious, as was found in earlier work [18]. On a five-dimensional 
hypercubic lattice, there are over 4 x lo9 possible arrangements of occupied sites on 
the block, each of which must be checked for occupation and probability of connection 
to the ghost site. Not only do the numbers of clusters to be counted pose difficulties, 
but the possibility of having two separate percolating clusters on the same hypercube 
causes further complications. 

The difficulty of the problem at hand precluded us from using a counting method 
based on cluster topology, as the chance for human error was too large. Instead, a 
computer program was written to determine the exact size of the clusters and to 
rigorously check for percolation. The requirements of the program were twofold: (i)  
to find the cluster(s) for each specific configuration and (ii) to check whether the 
cluster(s) percolated in the sense of block cluster theory. 
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The 32 sites on the five-dimensional hypercube were represented by the 32 bits of 
an integer *4 variable, which allowed all the accounting to be done by utilising FORTRAN 

intrinsic functions of a VAX 750 computer. 
For each configuration clusters were first found by choosing an initial occupied 

site and checking whether neighbouring sites were occupied. If one or more occupied 
neighbours were found, the cluster became the initial site plus occupied neighbours. 
The process was repeated until all possible percolative clusters were found. It was 
next checked whether the cluster(s) did span d or d - 1 dimensions of the hypercube. 

4. Results 

4.1. The field exponent in d = 4  

The probability that a block is percolative in d - 1 dimensions and connected to the 
ghost site must first be found [ll-161. Equation (2) is, for d = 4 ,  

16 16 

1 -exp(-hb) = C P$pk(l -exp(-jh)] (3) 
k = 5  j = O  

where Pi is the number of configurations of occupied sites which contain k occupied 
sites and j disconnected sites, and which are percolative in d - 1 dimensions. The 
exact values of P; can be found in appendix 1,  where the explicit form of the right-hand 
side of (3) is given. The fixed point ( h * ,  p * )  occurs at h* =0,  p* = 0.3582. 

The renormalisation group equations, i.e. equation (3) and that corresponding to 
equation ( l ) ,  which was derived in [ 181, must then be linearised about their fixed points: 

where TR is the linearised renormalisation group operator. The eigenvalues A, and 
A,, of zR determine the thermal exponent y and the field exponent x :  

A, = Ly ( 5 )  

A h  = L" ( 6 )  

where L is the lattice rescaling factor, which equals 2 for the ordinary hypercubic 
lattice. From x and y, all critical exponents can be found, e.g. 

Y = (2X - d ) / Y  (7) 

and 

Y = l /y.  

4.2. The thermal and field exponents in d = 5 

Having determined the exact number of all percolating configurations in d = 5,  the 
fixed point p* is the solution Pb = p  =p* of equation (1) with h = 0. The analytic form 
of ( 1 )  is given in appendix 2. The root of the polynomial R,(p, 0) - p ,  with R1 given 
by the right-hand side of (A2.1), is found numerically to be 

p* = 0.258 484. 
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From equation (5) we evaluate 

giving, from equation (8), the thermal exponent: 

The analytic form of the function R, (p ,  h )  of (2) is given in appendix 3. Equation 
(A3.1) of appendix 3 yields the field eigenvalue and exponent 

and 

A, = 3.405 67 

v = 0.565 63. 

A h  = 10.6194 

= ( 2 ~  - d ) / y  = 1.0305 
respectively. 

5. Conclusion 

The value of the correlation length exponent v, obtained by an exact enumeration of 
all percolative blocks in d = 5, compares very favourably with values obtained from 
the E expansion, Montecarlo techniques and block cluster theory on a decorated 
lattice for both site and bond percolation (see table l),  while the values of the field 
exponent y compare much less favourably with those obtained by the two former 
methods (see table 2). In other words, the block cluster theory optimisation of the 
conservation of the free energy preserves rather well the connectivity of clusters, 
accounting for the accurate values of the thermal exponent. On the other hand, it is 
more difficult to simulate the shape of large clusters in small blocks. This leads to an 
enhanced compactness of the clusters in the block system, amounting to low values 
of the field exponent and, consequently, of the susceptibility critical exponent y, as 
seen in this study. 
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Appendix 1 

For d = 4, the analytic form of the function R2 ( p ,  h )  of equation (2) is 
R, (p ,  h )  = (64p4q'2+"6p5q' '+720p6q'o+800p7q9+224p8q8+ 16p9q7) 

x [ I  -e~p(-llh)]+(192p~q'~+768p~q"+ 1152p6q'O+768p7q9) 
x [l -exp(-12h)]+(576p5q"+ 1824p6qIo 
+2016p7q9+864p8qs+96p9q7)[1 -exp(-13h)] 
+(192p5q" + 1472p6q'o+2912p7q9+2256p8qs+704p9q7+80p'oq6)  
x [l  -exp(-14h)]+ (576p6q 'o+2608p7q9+3872psqs  
+2624p9q7+960p'Oq6+ 192p"q5+ 16p1*q4)[1 - exp(-15h)]+ ( 192p6q10 
+ 1728p7q9+5~84p8q8+8000p9q7+6968p'oq6+4176p' 'q5+ 18O4p"q4 
+56Opl3q3+ l2OpI4q2+ 16p'5q+p'6)[1 -exp(-16h)]. (Al.1) 
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Table 1. Correlation length exponent v. 

d 

Method 2 3 4 5 6 

Analytic solution of the block cluster theory 

lattice 
Decorated hypercubic 1.39 [18] 0.86 [ 181 0.65 [18] 0.54 [18] 0.475 [ 181 
lattice 
Bond percolation 1.63 [18] 0.93 [18] 0.69 [18] 0.57 [18] 0.497 [18] 

Other methods$ 

Monte Carlo 1.35*0.01 [3] 0.841.0.01 [3] 0.7*0.1 [3] 0 .6 i0 .1  [3] 0.5*0.1 [3] 

Ordinary hypercubic 1.39 [17] 0.88 [17] 0.68 [18] 0.566t - 

Series 1.34 [ l]  0.88 [ 11 

0.88 * 0.05 [4] 
0.878 * 0.003 [SI 

0.68 * 0.3[4] 

E expansion 1.07 [8, 91 0.83 [8,9] 0.68 [8, 91 0.57 [8, 91 0.50 [8, 91 
1.31 [lo] 0.89 [lo] 0.69 [lo] 0.57 [ 101 O.SO[lO] 

Other !§ 0.89 [16] 0.64 [15] 0.51 [15] - 
1.0 [6] 
1.04[14] 
1.22[11] 

t This work. 
$ Ordinary hypercubic lattice only. 
B Conjectured exact value. 

Table 2. Field exponent y (ordinary hypercubic lattice). 

d 

Method 2 3 4 5 6 

Block cluster 2.344 [17] 
theory 
Series expansion 2.43 *0.03 [21] 

2.42 f 0.02 [22] 
E expansion 2.41 [8-101 
Monte Carlo 2.29i0.01 [24] 

Other 2.405 [ 161 

1.692 [ 171 1.277+ 1.0311 - 

1.66f0.07 [21] 1.40*0.02 [22] 1.17i0.02 [22] 1.08*0.02 [22] 
1.66i0.02 [22] 1.48i.0.08 [23] 1.18i0.07 [23] 1.04i0.06 [23] 

1.6*0.1 [25] 1.610.1 [20] 1.3k0.1 [20] 1.0*0.05[20] 
1.8i0.05 [20] 
1.78*0.09[4] 1.43*0.07 [4] 
1.79[16] 1.43 [ I S ]  1.21 [15] 

1.81 [8-101 1.44 [8-101 1.18 [8-101 1.0 [8-101 

t This work. 

Appendix 2 

For d = 5, the analytic form of equation (1) with h = 0 is 

pb = 6912p6qZ6+ 138 752p7q25+ 1287 36Opsqz4+ 7331 20Op9qz3+28 741 776p’Oq2* 

+82 678 048p”q2’+ 182 186 896p12q2’+318 837 4 4 0 ~ ” q ’ ~  

+459 174 640p’4q’s+562 580 128p’5q’7+600 707 928pl6qI6 

+ 565 722 72Opl7qI5+471435 600p’8q14+347 373 6 0 0 ~ ’ ~ q ’ ~  
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+225 792 84Op2Oql2+ 129 024 480p2'q1'+64 512 240p22q10 

+ 28 048 + 10 518 3 0 0 ~ ~ ~ q ' +  3365 856p2'q7 + 906 

+201376p27qs+35 960p2Eq4+4960p29q3+496p30q2+ 32p3'q +p3' 
(A2.1) 

where q = 1 - p .  

Appendix 3 

For d = 5, the analytic form of the function R2(p ,  h )  of equation (2) is 

R2(p ,  h )  = (160p5q27+2592p6q26+ 19 712p7q2'+93 440pxqZ4+309 120p9q23 

+ 704 32Op'Oqz2+ 1068 736p"q2'+ 1056 704p"qZ0+667 36OpI3q1' 

+262 720p'4q'8+70 240p"q'7+ 13 4 0 8 ~ ' ~ q ' ~ +  1664p17q1s 

+96p'xq'4)[1 -exp(-16h)]+ (1920pSqz7+26 880p6qz6+ 174 72Op7q2' 

+ 698 880p8q24+ 1921 92Op9qz3 + 3492 4 8 O ~ ' O q ~ ~  

+ 3964 800p"q" +2676 480p12q20+996 4 8 0 ~ ' ~ q ' ~ +  176 640p14q18 

+ 13 28O~"q'~)[ l  - e ~ p ( - 1 8 h ) ] + ( 1 9 2 0 p ~ q ~ ~ + 2 6  560p6q26 
+ 170 880p7q23 + 678 0 8 0 ~ ' q ~ ~ +  1855 3 6 0 ~ ~ 9 ~ ~  + 3485 760p 10 q 22 

+4297 280p'1q21+3360 960p'2q20+ 1613 120p13q19+457 28Opl4q1' 

+80 400p1sq'7+7680p16qi6+320p17q)[1 -exp(-19h)] 

+ ( 9 1 2 0 ~ ~ q ~ ~ +  109 44Op7q2'+601 9 2 0 ~ ~ q ~ ~ + 2 0 0 6  400p9q23 

$4514 400p'0q22+6423 360p"q21 + 5382 720p12q20+2521920p'3q'9 

+600 480p14q1x+58 56Op"q"+ 1 4 4 O ~ ' ~ q ' ~ ) [ l  -exp(-20h)] 

+ (96 OOOp6q26+ 116 800p7qzS+653 2 3 0 ~ * q ~ ~ + 2 2 2 1  120p9q23 
$5121 600p'0q22+7898 880p11q21+7704320p12q20+4603 520p 13 q 19 

+ 1654 400p14q1E+340 8 0 0 ~ ' ~ q ' ~ + 3 8  O80pI6ql6+ 1 9 2 0 ~ ' ~ q ' ~ )  

x [I  - e ~ p ( - 2 l h ) ] + ( 3 8 4 0 p ~ q ~ ~ + 6 7  680p7qZs+471 3 6 0 ~ ' q ~ ~  
+ 1838 080p9q23 + 4600 2 4 O ~ ' O q ~ ~  + 7803 84Op"q2' + 8243 280p 12 q 20 

+5139 840pl3qi9+ 1983 680p14q1s+524640p IS q 17 

+ 95 520pI6ql6+ 10 400p17q's + 400p'8q14)[ 1 - exp( -22h)l 

+ (43 2O0p7q2' +436 9 6 0 ~ ' q ~ ~ +  1995 680p9q23+ 5425 9 2 O ~ ' O q ~ ~  
+9742 08Op"q2'+ 11 333 760p12q20+7640 800p13q19+2777 920p 14 q 18 

+ 549 7 6 0 ~ " q ' ~  + 53 920p16q'6+ 1280p'7q's)[ 1 - exp(-23h)] 

+(15 36Op7q2'+264 7 2 0 ~ ' q ~ ~ +  1632 1 6 0 ~ ~ q ~ ~ + 5 3 9 0  560p'0q22 

+ 11 066 240p"q2' + 14 996 32Op"q2'+ 12 725 120pi3qi9 
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+6150 560p'4q1s+ 1710 080p'sq27+313 280pI6ql6 
+ 36 320p'7q1s+ 1920p18q'4)[ 1 - exp( -24h)l 
+ ( 5 7 6 0 ~ ~ q ~ ~ +  158 
+ 11 537 76Op"q2' + 17 407 840p12q20+ 17 204 OOOpi3qi9 
+ 10 535 200p14q'8+3815 360p1sq'7+894 560pI6ql6 
+ 151 68Opi7qis+ 15 680p'8+q14+640p'9q'3)[1 -exp(-25h)] 
+ (68 6 4 0 ~ ' q ~ ~ + 8 4 6  +4240 4 6 4 ~ " q ~ ~ +  11 698 268p1'q2' 
+ 19 962 O24pl2q2O+22 111 460p13q'9+15 831 6 0 0 ~ ' ~ q ' ~  
i-7029 316p"q17+ 1973 232pI6ql6+421 408p17q'5+80 8 3 2 ~ " q ' ~  
+ 11 840p'9q'3+992p20q'2+32p21q'1)[1 -exp(-26h)] 
+(23 040psq24+510 7 2 0 ~ ~ q ~ ~ + 3 4 7 5  200p'0q22+ 11 845 60Op"q2' 
+23 878 560p12q20+30 577 760pI3ql9+25 503 680p'4q'8 
+ 13 708 040~ ' 'q '~+4567 840p16q16+901 6 0 0 ~ ' ~ q ' '  
+97 920p'8q'4+4640p19q'3)[1 -exp(-27h)] 
+ (9600psq24+2600 160p9q23+2500 480p'0q22+ 11 021 280p1'q2' 
+27 338 2O0p"q2'+42 321 960pI3ql9+43 092 OOOp14q'8 
+29 582 800p1Sq17+ 13 808 48Opl6ql6+4372 520p17q15+926 2 4 0 ~ ' ~ q ' ~  
+ 125 760p19q13+9800p20q'2+320p21q'1)[l - exp(-28h)] 
+ (97 920p9q23+ 1551 360p'0q22+9172 24Op"q2'+28 453 200p12q20 
+53 734 840pI3ql9+66 866 040p14q18+57 401 28Op1'ql7 
$34 936 160p'6q'6+ 15 298 360p17q'5+4830 6 8 0 ~ ' ~ q ' ~  
+ 1082 72Opl9ql3 + 164 480p20q12+ 15 2O0p2'q1' +640p22q10) 
x [ 1 - exp( -29h)]+ (19 200p9q23 + 669 7 9 2 ~ ' ~ ~ ~  +6044 540p"q21 
+25 322 9 1 2 ~ ' ~ q ~ ~ + 6 1  518 960pI3ql9+97 248 160p'4q'8 
+ 107 249 5 8 4 ~ " q ' ~ + 8 6  363 568pI6ql6+52 311 904p17q15 
+ 24 238 9 6 O ~ ' ~ q ' ~ t -  8626 7 2 0 ~ ' ~ q ' ~ + 2 3 3 5  O56p2'q" 
+467 552p2'q"+65 5 3 6 ~ ~ ~ q ' ' f  5760p23q9+240p24q8) 
x [l  -exp(-30h)]+(159 3 6 O ~ ' O q ~ ~ + 2 5 2 7  8O0p1'q2' 
+ 15 694 240p'2q20+52 854 720pI3ql9+ 112 806 140p'4q'8 
+ 167 555 1 8 8 ~ ' ' q ' ~ +  184 190 056pI6ql6+ 156 159 288p"q" 
+ 104 894 520p18q14+ 56 710 2 0 0 ~ ' ~ q ' ~  + 24 835 968p2OqI2 
+8794 016p21q"+2491 8 0 8 ~ ~ ~ q ' ' +  553 7 6 0 ~ ~ ~ q ~ + 9 3  280pZ4qs 
+ 11 2 3 2 p 2 5 q 7 + 8 6 4 p 2 6 q 6 + 3 2 p 2 7 q 5 ) [ 1  -exp(-3lh)] 

+83 914 32Oj~'~q' '+ 175 148 900p1Sq17+273 457 274pI6ql6 
+335 955 9O4pL7q1'+336 330 180p18q14+280 808 320pI9ql3 
+ 198 446 224p20q12+ 119 747 34Op2'q" +61954 2 5 6 ~ ~ ~ q ' O  
+ 27 489 
+ 2 0 1 3 4 4 ~ ~ ~ q ' +  35 96Opz8q4+ 4 0 6 0 ~ ~ ~ q ~  + 496p30q2 + 32p3'q + p 3 2 )  
x [ 1 - exp( -32h)l. 

1254 400p9q23 +4932 9 6 O ~ ' O q ~ ~  

+ (42 6 4 O ~ ' O q ~ ~ + 7 3 5  66Op"q2'+ 5996 456pI2q2'+2805 9840p 13 q 19 

+ 10 424 7 8 0 ~ ' ~ q ~  + 3354 624p2'q7 + 905 

(A3.1) 
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